Get Model List
The get model list section demonstrates how to retrieve information about AI models that can be used to create a project through the API.
1. API endpoint
https://app.deepbrain.io/api/odin/v3/model
2. Response parameters
key | desc | type |
---|---|---|
models | Information about synthetic models | Array(json) |
models[].id | Unique key of the AI model | String |
models[].label | Name information of the AI model | Json |
models[].label.ko | Korean notation | String |
models[].label.en | English notation | String |
models[].thumbnail | Image path for previewing the model | String |
models[].clothes | Clothes information | Array(json) |
models[].clothes[].id | Clothes that the AI Model will wear. | String |
models[].clothes[].label | Name of clothes | Json |
models[].clothes[].label.ko | Korean notation | String |
models[].clothes[].label.en | English notation | String |
models[].clothes[].thumbnail | Image path for previewing the clothes | String |
3. Sample Request
- cURL
- Node.js
- Python
curl https://app.deepbrain.io/api/odin/v3/model \
-H "Authorization: ${API KEY}" \
-H "Content-Type: application/json" \
-X GET
import axios from "axios";
const token = ${API KEY};
axios.get(`https://app.deepbrain.io/api/odin/v3/model`,
{
headers: {
'Authorization': `${token}`,
'Content-Type': 'application/json'
}
}
)
.then((res) => {
console.log(res.data);
})
.catch((error) => {
console.error(error);
})
import requests
import json
url = "https://app.deepbrain.io/api/odin/v3/model"
headers = {
"Content-Type": "application/json",
"Authorization": ${API TOKEN}
}
r = requests.get(url, headers=headers)